Attributions of trust and the calculus of reciprocity☆

Madan M. Pillutla,a Deepak Malhotra,b and J. Keith Murnighanc,*

a London Business School, Regent’s Park, London NW1 4SA, UK
b Harvard Business School, Harvard University, Soldier’s Field, Boston, MA 02163, USA
c Management and Organizations Department, Kellogg Graduate School of Management, Northwestern University, 2001 Sheridan Road, Evanston, IL 60208-2011, USA

Received 1 August 2000; revised 31 July 2002

Abstract

This research investigated trust and reciprocity in two experiments using the Trust Game. In the Trust Game, Player 1 can “trust” an unknown Player 2 by sending some portion of a monetary endowment. The amount sent triples on its way to Player 2, who can then “reciprocate” by returning as much as he or she wishes to Player 1. Initial endowments were either $10 or $20 and were known to recipients; amounts sent were experimentally manipulated and varied from $2 to the entire endowment. Although many trusted parties returned enough money to equalize outcomes, trustors only benefited, on average, when they sent all or almost all of their endowments. Results suggested that recipients viewed sending less than everything as a lack of trust and that felt obligations mediated choices to reciprocate. These and other results contrast markedly with traditional, incremental models of the trust process, which suggest that initial trustors should take small risks and build trust gradually.

© 2003 Elsevier Science (USA). All rights reserved.

Trust and reciprocity are intimately related: reciprocation of an initially trusting act can instigate a beneficial cycle of increasing trust and reciprocation. Unreciprocated trust, however, can seriously damage a relationship and weaken its prospects.

Traditional, incremental models of trust development (e.g., Rempel, Holmes, & Zanna, 1985) suggest that trust initiators should be careful, because trust involves risk. Thus, it is wise for trustors to take relatively small risks initially, increasing their risks as a relationship develops. Trusted parties, however, may view caution on the part of trustors skeptically, wondering why they have not trusted more (Weber, Malhotra, & Murnighan, 2002). Trusted parties may view small initial acts of trust negatively, or may not recognize them as “trusting acts” at all. Either reaction reduces the likelihood of reciprocation. If the likelihood of reciprocation depends on the clarity of a trusting act, then trust initiators have a difficult dilemma—how much must they risk to engender reciprocation? A ‘generalized norm of reciprocity’ (Gouldner, 1960, p. 170) suggests that initial trusting acts will be reciprocated regardless of their size, because people understand that they should help (and not injure) those who have helped them. Yet egocentric biases (Ross & Sicoily, 1982), such as the tendency to devalue others’ contributions (Messick & Sentis, 1979), will reduce the likelihood of reciprocation, particularly if cautious trustors take only small risks.

In the experiments presented here, we investigated trusted parties’ decisions to reciprocate by manipulating the amount of trust shown (and risks taken) by initial trustors in the Trust Game, first investigated by (Berg, Dickhaut, & McCabe, 1995).

The Trust Game

In the initial empirical study of the Trust Game (Berg et al., 1995), each Player 1 (“trustor”) decided how
much of a $10 endowment he or she would send to Player 2 ("recipient"). Both knew that Player 2 would receive three times the amount that Player 1 sent, and that Player 2 could then decide how much of this larger received amount (if any) he or she would return to Player 1.

The structure of this game reflects, in an easily observable way, the central element of trusting acts—making oneself vulnerable based upon positive expectations of the intentions or behavior of another (Rousseau, Sitkin, Burt, & Camerer, 1998). Any money sent to Player 2 makes Player 1 immediately vulnerable, because Player 2 can reciprocate as little as he or she wishes. Because this one-shot, anonymous interaction provides no opportunity for reputation building, Player 2 acts as a dictator with no economic incentive to return anything. Thus, game theory (Myerson, 1991) predicts that rational Player 1s will send no money. This outcome is far from collectively efficient, however, because anything Player 1 sends increases collective value.

Previous results

Berg et al. (1995) reported in their first experiment that Player 1 sent an average of $5.16 (out of $10). The average amount returned by Player 2s was $4.66 (of $15.48), leaving Player 1s with an average of 50 cents less than they had sent. In a second experiment, participants who knew the results of the first experiment sent slightly more ($5.36) and also returned more ($6.46), providing Player 1s with an average gain.

Although these results indicate that trusting acts are reciprocated, reciprocity was not universal, either in frequency or size. In particular, reciprocated amounts rarely created equal outcomes. Berg et al. (1995, p. 137) concluded that: “some of the subjects who did not reciprocate may not have interpreted Player 1s’ behavior as initiating a trust.” Unfortunately, the decisions made by Player 2s in Berg et al. (1995) and later experiments (e.g., Abbink, Irlenbusch, & Renner, 2000; Gneezy, Guth, & Verboven, 2000) were restricted to the actual amounts that Player 1s sent, making it difficult to assess the relationship between the amounts sent and returned, due to insufficient data. In addition, these experiments did not assess how Player 2s interpreted the behavior of Player 1s, nor did they ask them to explain how they made their own decisions. Thus, the current experiments explicitly manipulate the amounts Player 1s send, their endowments, and (in Experiment 2) assess the reasons behind participants’ reciprocity decisions.

Earlier research generally used repeated Prisoner’s Dilemma (PD) games to investigate the relationship between trust and reciprocity (e.g., Lave, 1965; Solomon, 1960). PD, however, is not an appropriate setting for studying whether and how the size of trusting acts engenders reciprocity, because PD choices not only respond to partners’ actions, but also may vary with own prior decisions. Thus, reciprocity might result from efforts to make amends for past behavior and may not reflect an attempt to repay a partners’ trusting action. In contrast, Trust Game choices allow us to map out the relationship between levels of trusting actions and the degree of reciprocity in a controlled manner.

The choice to reciprocate

Cialdini and his colleagues (e.g., Cialdini, 1993; Cialdini & Trost, 1998) have identified felt obligation as a key determinant of reciprocity. Research consistently shows that feelings of obligation and indebtedness follow the receipt of help, gifts, and favors (e.g., Eisenberger, Cotterell, & Marvel, 1987; Greenberg & Frisch, 1972; Tesser, Gatewood, & Driver, 1968; Trivers, 1971). But feelings of obligation may not accompany every gift. Gregory (1975) observed that feelings of obligation are not incurred when recipients (of gifts, concessions, etc.) feel entitled to what is given. In particular, he suggested that people often believe that those having more should share with those having less. Extending his model to the Trust Game suggests that recipients who receive a tripled amount that is less than or equal to what the trustor has retained should not feel obligated to reciprocate. Thus:

Hypothesis 1: Trusted parties will be less likely to reciprocate when reciprocity would make their outcome smaller than that of initial trustors'.

Conversely, when trustors send enough to give recipients more than they have retained, trusted parties should feel obligated and be more likely to reciprocate. Gouldner (1960) and Cialdini (1993) both suggest that they should return at least as much as was sent, ensuring that trustors are not hurt for having trusted. “Give backs”—returning exactly the amount that was sent (before being tripled)—may still leave trustors with less than recipients, however, providing impetus for recipients to return more, perhaps enough to equalize outcomes. Messick (1993), for instance, claims that equality may be the most socially defensible allocation principle.

The recipient’s choice of how much to reciprocate determines whether trustors will ultimately benefit from trusting. If they only expect to receive as much as they send, then they have little motivation to trust (other than altruism). However, if recipients might return more than they were sent, then trustors have a monetary incentive to trust and send money. Thus, trustors must decide whether to trust, and if so, what amount will yield a return greater than a simple “give back.” Several resource allocation models suggest that when people can choose between two normative principles (e.g., return what was given versus equality), they tend to choose the one that maximizes their own benefits (e.g., Greenberg,
Thus, give-backs or equalizing outcomes should prevail, depending on which yields more for recipients.

Hypothesis 2: Reciprocators’ returns will conform to the accepted normative principal that benefits them most.

Murnighan, Oesch, and Pillutla (2001) have shown that the desire among people to keep as much as possible in a money allocation task is constrained by self-impression management concerns. They suggest that people want to view themselves positively, even when their actions are anonymous. Thus, they observed that people kept more for themselves in an allocation task when they could attribute doing so to external causes and not to their own greed. When external attributions were unavailable, participants more often divided the money equally.

In the Trust Game, when trustors do not send their entire endowment, recipients can justify a decision not to reciprocate by noting “the fact” that they have not been trusted completely. This allows recipients to keep more while still reciprocating (to some degree). When trustors send everything, however, it is difficult to deny their trust or the obligation that it engenders. Not reciprocating then puts recipients in a bad light. Thus, equalizing outcomes (which might require returning more than was sent) should be most likely when trustors send their entire endowments, and not reciprocating at all should be highly unlikely.

Hypothesis 3a: Reciprocity that equalizes outcomes is most likely when trusting actions are maximal.

Hypothesis 3b: Not reciprocating is least likely with maximal trust.

These hypotheses suggest that participants who receive amounts that leave them with no more than trustors will tend to return nothing and that participants who receive more will either return as much as they were sent or will equalize outcomes, whichever requires them to return less. The exception is when trustors send everything, in which case recipients should equalize outcomes. Taken together, these hypotheses contrast with traditional models of trust development (e.g., Rempel et al., 1985), which suggest that small acts of trust will be appreciated and reciprocated and large acts open trustors up for exploitation. Instead, these hypotheses suggest that reciprocity is greater and more likely when trustors accept greater vulnerability.

Experiment 1

Method

Participants were 33 MBA students from a major midwestern business school who were enrolled in an MBA elective course. All participants volunteered to participate in a “decision-making exercise” that allowed them to earn some money. They were told that students from another class had been assigned the roles of Player 1 for the first part of the task. They would be Player 2s and would complete the second part of the task. (In fact, there were no Player 1s.)

The instructions indicated that Player 1 had already decided how much of his or her monetary endowment ($10 or $20) to send, and that participants would decide how much to return. Each participant received 16 amounts, sent ostensibly from different Player 1s, so each participated in 16 different Trust Games: $2, $3, $5, $6, $9, and $10 were sent for each of the two endowments ($10 and $20), and $4, $12, $18, and $20 were also sent for the $20 endowment. Each amount sent was listed on a separate sheet of paper and indicated Player 1’s original endowment ($10 or $20), how much he or she had sent, how much the participant had after the amount was tripled, and how much Player 1 had retained (not sent). Participants were told, “you can send back some, all, or none of the money that you receive. In the end, the other person will have what they retained from their endowment plus what you send back. You will keep what they send to you, times 3, minus whatever you send back.” Participants were told that Player 1 knew that the money he or she sent would be tripled, that the recipients could return any amount they wished, and that players would never know each other’s identity.

Half of the participants received the $10 endowments first; the other half received the $20 endowments first. The amounts sent for each endowment were randomly ordered. Participants indicated how much they were returning for each amount on a separate page that included an open-ended question asking them to explain their decision briefly.\(^1\)

Participants were informed that the experimenter would randomly choose one of their decisions (with a multi-sided die) to determine their actual monetary payoff. Participants were paid based on the amount that they had kept on this choice. After the payments were made, we described the purpose of the study and answered all questions. No one expressed any suspicions about the identity of Player 1s or any ideas about our hypotheses.

Results

Table 1 displays the mean returns by Player 2s, the frequencies of four frequent return strategies (which accounted for 90% of the choices), and Player 1s’ final outcomes. Although returns increased with the amount sent, the average return only exceeded the amount sent when Player 1 sent all or almost all (i.e., $18 of $20) of the endowment. Also, for identical amounts sent, Player

\(^1\) We analyzed the responses to this question, but the results provided little in the way of unique insights.
2s always returned a smaller average percentage of the (tripled) total that they received when Player 1s had the $20 rather than the $10 endowment.

When Player 1s did not send enough to allow Player 2s to equalize outcomes, Player 2s tended to return nothing (101 of 132 cases). When they received more than Player 1s retained, the modal returns of Player 2s equalized outcomes.

Hypothesis tests. Hypothesis 1 predicted that Player 2s would be unlikely to return money if doing so meant that their outcomes were less than Player 1s’. This could happen in the $2 sent/$10 endowment and the $2, $3, or $4 sent/$20 endowment conditions. In fact, a comparison of zero returns in these versus all other conditions, using the Bonferroni-Dunn method applied to the Cochran Q test, supported the prediction (see Table 1, column 5).\(^2\) When small amounts were sent, zero returns were particularly frequent. [The overall Cochran Q test on zero returns—which is analogous to an omnibus analysis of variance test (and appropriate for repeated measures categorical data)—was significant: \(Q(15) = 216.96, p < .01\).]

According to Hypothesis 2, the returns of Player 2s who received more than Player 1s retained should conform to whatever norm benefited them most. This means that ‘give backs’ should have been more frequent for the $6, $9, or $10 sent/$10 endowment and the $12, $18, or $20 sent/$20 endowment conditions, and that equality should have been more frequent for the $3 sent/$10 and the $5, $6, or $9 sent/$20 endowment conditions. The data in Table 2, however, show that equality was preferred in all these conditions (120 vs 27), providing no support for Hypothesis 2.

Hypothesis 3a predicted that equalizing outcomes would be most likely following maximal trust. The Bonferroni-Dunn/Cochran Q test indicated that equality was significantly more frequent in the send-everything conditions than in the other conditions that allowed Player 2s to equalize outcomes, supporting the hypothesis.\(^3\) The only conditions in which Player 2s equalized outcomes more than in the send-everything conditions were those in which doing so satisfied multiple criteria (i.e., equalizing = “give back” or equalizing = zero).

Hypothesis 3b predicted that not reciprocating would be less likely when Player 1 sent everything. It was not supported: zero offers were no less likely here than in other conditions (except when participants were sent extremely small amounts, i.e., conditions relevant to Hypothesis 1).

\(^2\) The Bonferroni-Dunn technique applied to the Cochran Q test model identifies the minimum required difference for the observed proportions of any two experimental conditions to differ from one another at a prescribed level of significance (.05). The minimum required difference in proportion is designated as CDc and is 0.179 in this case.

\(^3\) The $5 sent/$10 endowment and $10 sent/$20 endowment conditions were problematic because equalizing outcomes and giving back what was sent were accomplished by the same return. Thus, these conditions were not included in this analysis. Instead, the maximal trust conditions ($10 sent/$10 endowment and $20 sent/$20 endowment) were compared to the $3, $6, or $9 sent/$10 endowment and $6, $9, $12, or $18 sent/$20 endowment conditions. The CDc in this test was 0.178.
Table 2
Summary Data from Experiment 2

<table>
<thead>
<tr>
<th>Amount sent</th>
<th>n</th>
<th>Mean return</th>
<th>% of tripled amount return</th>
<th>Zero returns</th>
<th>Give back amount sent</th>
<th>Equalizes outcomes</th>
<th>More than equal outcomes</th>
<th>Player 1’ mean outcomes</th>
<th>Obligated (1 = obligated, 7 = not obligated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2</td>
<td>15</td>
<td>$1.48</td>
<td>24.67</td>
<td>6</td>
<td>3</td>
<td>–</td>
<td>9</td>
<td>$19.48</td>
<td>4.67</td>
</tr>
<tr>
<td>$5</td>
<td>15</td>
<td>$3.25</td>
<td>21.67</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>$18.25</td>
<td>4.83</td>
</tr>
<tr>
<td>$10</td>
<td>14</td>
<td>$8.86</td>
<td>29.53</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>$18.86</td>
<td>3.29</td>
</tr>
<tr>
<td>$12</td>
<td>15</td>
<td>$10.37</td>
<td>28.06</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>$18.37</td>
<td>2.40</td>
</tr>
<tr>
<td>$18</td>
<td>15</td>
<td>$23.40</td>
<td>43.33</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>$25.40</td>
<td>2.17</td>
</tr>
<tr>
<td>$20</td>
<td>14</td>
<td>$23.21</td>
<td>38.68</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>$23.21</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Note. Underlined frequencies are not mutually exclusive from one another (particularly when they are identical, in which case they apply exactly equally to both categories).

A 2 (endowment) by 6 (amounts) repeated measures, multivariate analysis of variance (MANOVA) on the amount returned as a percentage of the tripled amount that Player 2s received (using an arcsine transformation of the percentage to compensate for violations of normality assumptions when analyzing percentages) revealed significant main effects for endowments $F(1,32) = 31.03; p < .01$ and amounts sent $F(5,28) = 11.52; p < .01$, and for the endowment by amounts interaction $F(5,28) = 4.06; p < .01$. This indicates that returns increased when the amount sent represented a larger percentage of Player 1’s endowment. A similar MANOVA on the effects of the amounts sent as percentages of the total endowment, with endowment and percentage sent as within participant factors and the percentage returned as the dependent variable, revealed a significant effect for the percentage sent $F(5,28) = 11.11; p < .01$. The endowment main effect $F(1,32) = .16; ns$ and the interaction $F(5,28) = 1.99; ns$ were not significant. Both analyses indicate that the amount Player 2s returned depended on the proportion of the endowment that Player 1s sent.

Overall, these results indicate that maximal trust increased the likelihood of equalizing returns and that most Player 2s needed more than what was retained to reciprocate. Player 2s who received such a surplus consistently favored equality over a “give back.” Zero returns did not diminish when Player 1s sent their entire endowment, apparently because some recipients never returned anything, regardless of the amount sent. On average, however, reciprocity increased as trust increased. Interestingly, Player 1s only obtained a final outcome that exceeded their initial endowment when they sent their entire endowment (or almost their entire endowment in the 20 condition). Thus, for Player 1s, partial trust was worse than not trusting at all.

To guard against the biases of repeated measures, Experiment 2 used a between-subjects design to test the same predictions. Bolton, Katok, and Zwick (1998) have shown that when participants make repeated allocation choices, they often choose a total amount to share, but they distribute it unequally, seemingly arbitrarily. Even when recipients are not identified and cannot be differentiated, many participants send different people different amounts. Thus, Experiment 1’s design might have increased variability in returns. Bolton et al. (1998) also found that zero allocations were more frequent in a repeated measures design. We investigated this possibility as well. We also included a more pointed post-experimental questionnaire to test whether felt obligations (Cialdini, 1993) mediated the effects of the amount sent on the amount returned.

Finally, because Player 1s’ final outcomes in Experiment 1 increased (slightly) when they sent their entire endowment or 18 or 20, we expected that reciprocity would be strongest in the send everything and almost everything (18 of 20) conditions. In other words, an extension of Hypothesis 3 could contrast maximal and almost maximal trust conditions with the other conditions. The mean return as a percentage of the tripled amount sent should thus be highest for maximal and almost maximal trust (Hypothesis 3c).

Experiment 2

Method

Participants were 88 MBA students (65 males and 23 females) from the same school, recruited in the same way, as in Experiment 1. The procedures were also essentially the same, except for the following changes. All Player 1s allegedly had a 20 endowment; each Player 2 was sent a single amount ($2, $5, $10, $12, $18, or $20); and each Player 2 had to make only one choice. After specifying how much they would return, participants responded to a post-experimental questionnaire that included demographic information and a series of items concerning their feelings about Player 1 and how much he or she sent them, and their expectations for Player 1’s feelings about them and how much they had returned. A comprehensive debriefing followed; no one expressed any suspicions about the identity of Player 1s or any ideas about the hypotheses.
Results

Table 2 displays the behavioral results.\(^4\) As in Experiment 1, average returns increased with the amounts sent, but only exceeded them when Player 1 sent all or almost all of the endowment.

As before, Player 2s returned zero significantly more often when they received $2 and $5 rather than $10, $12, $18, or $20 ($\chi^2(1) = 19.22$, $p < .01$), supporting Hypothesis 1. Participants in these conditions also reported weaker feelings of obligation ($t(82) = 5.84$; $p < .01$) in the single item measuring this construct in the post-experimental questionnaires. A mediation analysis, using the procedures outlined by Baron and Kenny, 1986, and dummy coding zero returns as ‘1’ and other returns as “0,” revealed that the amount sent was a significant predictor of zero returns ($\beta = -.42$; $p < .01$) and felt obligation ($\beta = .51$; $p < .01$), and that felt obligation was a significant predictor of zero returns ($\beta = -.57$; $p < .01$). When both the amount sent and felt obligation were used to predict zero returns together, the effect of the amount sent diminished ($\beta = -.17$; $p < .1$), but the effect of felt obligation did not ($\beta = -.48$; $p < .01$). This suggests that feelings of obligation partially mediated the relationship between amount sent and zero returns.

As in Experiment 1, equalizing outcomes was more frequent than “give backs” and did not depend on the amount being sent ($\chi^2(4) = 1.93$; ns), again providing no support for Hypothesis 2.

Equalizing outcomes was more frequent in the $20 and $18 than in the $12 conditions, but not significantly so ($\chi^2(1) = 2.50$; ns), providing little support for Hypothesis 3a. (The 10 condition was excluded from this comparison because sending nothing was the same as equalizing outcomes). Zero returns when 10 or more was sent were infrequent and did not differ across the 10, 12, 18, and 20 conditions ($\chi^2(1) = .03$; ns), providing no support for Hypothesis 3b.

An ANOVA on the amount returned as a percentage of the tripled amount that player 2 received (with an arcsine transform as in Experiment 1), with an a priori contrast of the 18 and 20 conditions versus all other conditions, tested Hypothesis 3c. This contrast was significant [$F(1.82) = 6.75$; $p < .05$], supporting the hypothesis that returns for maximal and almost maximal trust were higher than in the other conditions.

Post-experimental responses

Respondents completed eight semantic differentials on their attributions about (the fictitious) Player 1s.\(^5\) Five items measured participants’ trust attributions (fair/unfair, generous/cheap, risky/safe, kind/unkind, and trusting/cautious; coefficient $r = .90$) and three measured intelligence attributions (rational/irrational, smart/stupid, and efficient/inefficient; coefficient $r = .91$).

Player 1s who sent more money were perceived as more trusting ($\beta = .78$; $p < .01$) and more intelligent ($\beta = .36$; $p < .01$). We investigated whether these perceptions contributed to Player 2s’ choices about how much to return using Baron and Kenny’s (1986) moderation procedures. We conducted a regression analysis that included terms for the direct effects of attributions of trust and attributions of intelligence, as well as their interaction (which would reflect a moderation effect). There was a significant interaction (standardized $\beta = .25$; $p < .01$, $\Delta R^2 = .38$). Follow-up subgroup analyses that divided the sample at the median for attributions of trust revealed a positive relationship between attributions of intelligence and returns for high trust attributions (standardized $\beta = .41$; $p < .01$), but no relationship for low trust attributions (standardized $\beta = -.01$; ns). Thus, perceptions of Player 1s were important: Player 2s who perceived Player 1s as more trusting and smart returned more.\(^6\)

This suggests that recipients’ perceptions of trusting acts may create a difficult dilemma for potential trustors. Taking risks can signal that a person is trusting, or that he or she is irrational or stupid. Because trusted parties’ attributions about a trustee’s behavior may determine whether and how much they reciprocate, the same trusting action may result in different outcomes for trustors, depending on recipients’ attributions. Thus, the unpredictability of trusted parties’ perceptions increases the risk of trusting.

Conclusions

The results from these two experiments help to clarify the calculus of reciprocity decisions in the context of trust. Participants returned considerably more money as more was sent, apparently as a function of felt obligation. They reciprocated and sometimes rewarded those who sent everything; they reciprocated less when they were sent less (except for 18 of 20).

The Trust Game asks trustors to make unilateral trusting choices: Player 1s who trust are at the mercy of

\(^4\) Although gender was not a focus of our experiments, analyses show that men returned more [$F(1, 86) = 5.04$, $p < .05$] as a percentage of what they had received than did women. There were no gender differences on any other measure.

\(^5\) Respondents also completed three additional sets of semantic scales on their attributions about the amount they received, their feelings about the money received, and their expectations about the attributions that Player 1 might make on receipt of their offer. As these items are tangential to the main thrust of this paper, we focus only on items related to attributions about Player 1.

\(^6\) Given that intelligence was not experimentally manipulated, the causal ordering may be reversed, particularly if Player 2s who returned nothing justified their actions by denigrating initial trustors.
Player 2s. This is why game theory predicts that rational, profit-maximizing Player 1s should send nothing. Our results suggest that Player 1s were least well-served when they sent less than everything, because this yielded less than sending nothing or everything. Although sending less than everything still entailed risk, Player 2s did not respond well to partial trust. Given the risks of sending everything and the relatively small expected returns for doing so, a prescription based on these results might match the game theoretic prediction, for Player 1s to keep their endowments.

From a societal standpoint, however, such a strategy is seriously inefficient. Sending everything maximizes joint outcomes, and if reciprocity could be guaranteed, might increase Player 1s’ outcomes by as much as 50% (when recipients equalize outcomes). Trusting actions also lay the groundwork for future, mutually beneficial reciprocity. Problems arise because trusting requires risks prior to the receipt of potential gains.

Although many Player 1s in the Trust Game are best served by not trusting, our results suggest that Player 2s who thought Player 1s were smart returned more. Thus, trustees who can effectively convey the logic behind their risk-taking might be able to offset some of their risks. Trustors who send smaller amounts might also benefit by framing their choices as acts of trust, increasing feelings of obligation, and hence, reciprocity. More generally, trustees need to convey their viewpoint to recipients so that they can reach a shared understanding of their actions, their relationship, and the potential for mutual benefits.

The results revealed four patterns of responses, namely to return nothing, enough to equalize outcomes, “give backs,” or more than was sent. This suggests that trust may develop more effectively when trustors can discriminate among different kinds of recipients. Although our experiments did not allow for this differentiation, many natural situations do. Previous interactions with the same person, knowledge of his or her reputation, and third-party ties all provide important information in this regard (cf. Kramer, 1999).

Game theorists might view the reciprocity observed here as remarkable. Particularly notable in this vein were instances (56 of 280; 20%) when Player 2s returned money that gave Player 1s an outcome advantage. Although altruism is often invoked to account for such behavior, previous findings suggest that unprompted altruism occurs at a relatively low rate (about 5%; Rapoport, 1988). This suggests that Player 1’s initial act might be a critical determinant for Player 2s, and that these encouraging results deserve additional investigation.

Finally, our results stand in marked contrast to the traditional prescriptions for trust development, suggesting that attributional processes might facilitate all-or-none rather than gradual trust development (Weber et al., 2002). The results also suggest that the dynamics of trust and reciprocity pose serious interpersonal dilemmas with regard to initial trust signals: relatively small acts of trust may minimize chances that the trust will be reciprocated, but large acts of trust leave trustees extremely vulnerable. More generally, these results suggest that understanding attributional mechanics and the role of shared expectations may be critical for understanding the process of trust development.

References

Further reading

